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Abstract
Purpose: As one of the pathogenic factors of cerebral small vessel dis-
ease, venous collagenosis may result in the occlusion or stenosis of deep
medullary veins (DMVs). Although numerous DMVs can be observed in
susceptibility-weighted MRI images, their diameters are usually smaller than
the MRI resolution, making it difficult to segment them and quantify their sizes.
We aim to automatically segment DMVs and measure their diameters from
gradient-echo images.
Methods: A neural network model was trained for DMV segmentation based on
the gradient-echo magnitude and phase images of 20 subjects at 7 T. The diam-
eters of DMVs were obtained by fitting measured complex images with model
images that accounted for the DMV-induced magnetic field and point spread
function. A phantom study with graphite rods of different diameters was con-
ducted to validate the proposed method. Simulation was carried out to evaluate
the voxel-size dependence of measurement accuracy for a typical DMV size.
Results: The automatically segmented DMV masks had Dice similarity coef-
ficients of 0.68± 0.03 (voxel level) and 0.83± 0.04 (cluster level). The fitted
graphite-rod diameters closely matched their true values. In simulation, the fit-
ted diameters closely matched the true value when voxel size was ≤ 0.45 mm,
and 92.2% of DMVs had diameters between 90 μm and 200 μm with a peak at
about 120 μm, which agreed well with an earlier ex vivo report.
Conclusion: The proposed methods enabled efficient and quantitative study of
DMVs, which may help illuminate the role of DMVs in the etiopathogenesis of
cerebral small vessel disease.
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1 INTRODUCTION

Deep medullary veins (DMVs) are parenchymal veins sur-
rounding the lateral ventricle in human brain. Venous
collagenosis, which may lead to the obstruction or steno-
sis of DMVs, has been proposed as one of the pathogenic
factors of cerebral small vessel disease (CSVD).1–3 There-
fore, monitoring DMV diameter may shed new light into
the mechanisms of CSVD.

Due to the relatively high magnetic susceptibility of
venous blood, SWI and QSM techniques are often used for
quantitative analysis of oxygen saturation and morphol-
ogy of large cerebral veins.4–7 However, when studying
small cerebral veins such as DMVs (100–250 μm8), which
is below the resolution limit of current human brain MRI,
the partial-volume effect reduces the accuracy of QSM
for quantitative measurement. Furthermore, due to the
large numbers of DMVs in the brain, visual assessment
of DMV morphology is time-consuming.9–12 Only con-
ventional semi-automatic segmentation methods based
on thresholding, vesselness filter, and tubular tracking
have been proposed to facilitate more efficient and quan-
titative DMV morphological assessment.13–15 Given the
remarkable performances of deep learning–based meth-
ods in small vessel segmentation,16 it is highly desirable to
develop neural network models to enable more accurate
and fully automatic DMV segmentation.

Previous studies using SWI-based visual scoring of
DMVs have revealed that decreased visibility and number
of DMVs are associated with CSVD biomarkers such as
white-matter (WM) hyperintensities in T2-weighted MRI
images and lacunar infarcts.17,18 Quantitative measure-
ment of DMV diameters may provide new insight into
the role of DMVs in CSVD at an earlier stage. Multiple
methods have been suggested to correct the partial-volume
effect to achieve quantitative assessment of diameter, oxy-
gen saturation, and/or the susceptibility of small vein.19–21

However, none of these methods are suitable for the anal-
ysis of DMVs due to their smaller sizes and mostly perpen-
dicular orientations relative to the main magnetic field.

Here, we aim to automatically segment DMVs through
a neural network–based segmentation model and quan-
titatively measure the diameters of DMVs through physi-
cal model–based analysis of complex gradient-echo (GRE)
images.

2 THEORY

A DMV with nonzero blood-tissue susceptibility difference
(Δχ) in a magnetic field B0 will generate an inhomoge-
neous magnetic field pattern. Modeling the DMV as a long
cylinder, the local magnetic field experienced by the water

protons inside the vessel with an angle 𝜃vessel relative to B0
can be described as follows21–23:

ΔBin = B0 ⋅ Δ𝜒 ⋅

(
3cos2𝜃vessel − 1

)
6

(1)

The field at point p outside DMV can be approximated
by the sum of dipolar fields24 produced by short segments
of blood vessel, as follows:

ΔBout,p = 𝜇0

4𝜋

n∑
i=1

mi
(
3cos2𝜃ip − 1

)
r3

ip

(2)

where mi = 𝜋B0Δ𝜒a2li∕𝜇0 is the magnetic moment of ves-
sel segment i; 𝜇0 is the magnetic permeability of free space;
rip is the length of the line from point p to the center
of the vessel segment i, and 𝜃ip is the angle between B0
and this line; and a and li are the radius and length of
segment i, respectively. In order for Eq. (2) to be valid,
the segment length should satisfy li ≪ rip for most grid
points p. In this study, we set n = 50 to divide the DMV
into 50 short segments equally along its path. For a typi-
cal straight DMV length of about 5 mm, this results in li
= 0.1 mm, which is much smaller than the voxel size and
vessel length. Increasing n further was found not to alter
the fitted DMV diameters, but resulted in longer compu-
tation time. A schematic diagram of the cylindrical DMV
model is shown in Figure 1A.

The magnetic field inside and outside the vessel causes
phase shift at any point p and results in complex signal
intensity in GRE images as follows25:

Ŝp =

{
mwm ≣i𝛾⋅TE⋅ΔBout,p

(
rip > a

)
mblood ≣i𝛾⋅TE⋅ΔBin

(
rip ≤ a

) (3)

where γ is the gyromagnetic ratio, and mwm and mblood are
the MR signal magnitudes in WM and the blood, respec-
tively.

Assuming a voxel contains only a single DMV, the
measured MRI signal in a voxel is the convolution of
this complex signal with a 3D point spread function
PSF(x, y, z), where the PSF function in each dimension is
given by19

PSF(x) =

{Δk
2𝜋

⋅ sin(N⋅Δk⋅x∕2)
sin(Δk⋅x∕2)

, x ≠ 0

N ⋅ Δk
2𝜋
, x = 0

(4)

Δk = 2𝜋
N ⋅ voxel size

(5)

where N is the number of acquired k-space points.
The convoluted signal is sampled at the coordinates of

the voxel centers and fitted to the measured voxel signals
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ZHOU et al. 3

F I G U R E 1 Flow chart of the proposed
method. (A) Diagram of the cylinder model
(𝜃vessel is the angle between vessel and B0; 𝜇0

is the magnetic permeability of free space;
rip is the length of the line from point p to
the center of the vessel segment I, and 𝜃ip

the angle between B0 and this line; li is the
length of vessel segment i; and a is the vessel
radius). (B) Simulated complex images in
subvoxel scale following Eqs. (1)-(3). (C)
Simulated complex images after convolution
with point spread function (PSF). (D)
Measured complex images obtained from
the gradient-echo (GRE) magnitude and
phase images following Eq. (3); locations of
deep medullary vein (DMV) mask voxels are
labeled in red. The red contours in (C) and
(D) represent the region of interest for
nonlinear least-squares fitting.

via least-squares fitting. There are six fitting parameters,
including 𝜃vessel, 𝜑vessel, rxy, 𝛼, mwm, and the vessel radius
a. To ensure convergence of the fit, the values of Δ𝜒 and
mblood are fixed. The values of 𝜃vessel, 𝜑vessel, rxy, and 𝛼 are
used to define the spatial position of the DMV axis, where
𝜑vessel is the azimuthal angle of the DMV about B0, and
𝛼 and rxy are the angular position and distance to the ori-
gin of the intercept of the DMV axis on the x-y plane. The
cost function is the sum of square of the modulus of the
difference between measured and model-predicted com-
plex MRI signals over voxels within a cylindrical region
surrounding the longest straight segment of a DMV. The
overall flow chart of the proposed method is illustrated in
Figure 1.

3 METHODS

3.1 Graphite phantom study

To verify the proposed method, an MRI phantom was con-
structed, which consists of a plastic cylindrical container

with a diameter of 55 mm and a height of 165 mm and a
2× 4 array of graphite rods with different diameters (mea-
sured as 0.32, 0.32, 0.32, 0.54, 0.54, 0.55, 0.69, and 0.70 mm
using a vernier caliper) uniformly placed in the container
parallel to each other and to the bottom surface. The con-
tainer was filled with tap water and sealed. The graphite
rods (2B pencil leads) were made of 74% graphite, 20% clay,
and 5% wax.26

The phantom was scanned on a 3T MR scanner
(uMR890; United Image Healthcare, Shanghai, China)
equipped with a 64-channel head receiver coil. The
long axis of the cylindrical container and the graphite
rods were parallel and perpendicular to the main
magnetic field, respectively. A 3D multi-echo GRE
sequence was performed with the following parameters:
FOV= 150× 180× 216 mm3; matrix size= 208× 250× 300;
spatial resolution= 0.72× 0.72× 0.72 mm3; TR= 28.6 ms;
TE1–TE7= 3.7, 6.9, 10, 13, 17, 20, and 23 ms; flip angle
(FA)= 15◦; bandwidth= 350 Hz/pixel; undersampling
factor= 4; and scan time= 7 min 47 s. The images were
reconstructed using hybrid deep learning and iterative
reconstruction.27
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4 ZHOU et al.

3.2 In vivo study

The study was approved by the Institutional Review
Board of the University of North Carolina at Chapel
Hill. Twenty healthy volunteers aged between 21 and
55 years who provided written informed consents were
scanned on a 7T Siemens Magneton MRI scanner using
a Nova RF coil with 8 channels for transmitting and 32
channels for receiving. A 3D double-echo GRE-based
SWI sequence was performed with the following param-
eters: FOV= 220× 179× 83 mm3; GRAPPA factor= 3
along phase-encoding direction; number of autocali-
bration signal lines= 30; matrix size= 512× 416× 208;
spatial resolution= 0.43× 0.43× 0.4 mm3; TR= 21 ms;
TE1/TE2= 7.59/15 ms; FA= 10◦; and scan time= 8 min
39 s. To avoid modification of the PSF in Eq. (4), all filters
on the scan user interface that could affect the PSF during
image reconstruction were turned off, including image
filter, raw filter, and elliptical filter. The background phase
on the phase images had been removed during SWI post-
processing by vendor software on the scanner. Because
the background-phase removal only focuses on slow spa-
tial phase variations, it should have minimal effect on
the highly localized phase patterns associated with DMV.
The scans were performed in the same experimental ses-
sion as another study, which focused on studying the age
dependence of the perivascular space morphology.28 Only
images without severe motion artifacts are included in
this study.

3.3 Automatic DMV segmentation

A 3D-UNet model provided by the nnU-Net framework
was adopted to automatically segment DMVs.29 To provide
training data for the model, DMV masks were manually
labeled on the GRE magnitude images acquired at TE2.
We used images at TE2 for DMV segmentation, because
DMVs were better visualized in images at the longer TE.
To maximize the model performance in regions with the
most DMV, the model input consisted of 64-slice axial
slabs above the lateral ventricle, which contained the most
DMVs approximately perpendicular to the main magnetic
field. Both the magnitude and phase images acquired
at TE2 were used as model input. Because DMVs are
hypointense on the GRE magnitude images, contrasts of
the input magnitude images were reversed before serving
as model input, although this is not necessary.

To evaluate the performance of the segmentation
model, we took 19 subjects as the training set, and the
remaining subject as the test set, then repeated the process
with each subject serving as the test set (20 combinations
in all). Based on the test results, three metrics including

Dice similarity coefficient (DSC), sensitivity (SEN), and
positive prediction value (PPV) were calculated as follows:

DSC = 2TP
2TP + FP + FN

SEN = TP
TP + FN

PPV = TP
TP + FP

where TP, FP, and FN denote the true positive, false posi-
tive, and false negative DMV voxels or spatially connected
DMV clusters, respectively. DMV clusters were defined as
spatially connected DMV voxels, where all voxels on the
eight vertices of a unit cube of the image grid are con-
sidered connected. DMV clusters with less than 4 voxels
were excluded. When defined in terms of clusters, if a pre-
dicted vessel cluster spatially overlapped with a cluster in
the ground-truth mask, it was considered as a true clus-
ter. The cluster-based metrics were calculated, because the
segmentation task was designed to reveal the approximate
location of the DMVs and the diameter quantification was
performed for each cluster instead of for each voxel.

3.4 Simulation

To study the effect of spatial resolution on measurement
accuracy, we applied the diameter quantification method
to simulated GRE images of a DMV at different voxel sizes.
The DMV had a length of 4 mm and a typical diameter of
0.15 mm, and was oriented perpendicular to the main mag-
netic field. The values of Δ𝜒 , mblood, and mwm were set
according to typical values in the in vivo study and were
equal to 0.41 ppm, 17, and 60, respectively. Based on those
values, the complex signal inside and outside of the ves-
sel with TE= 15 ms and B0 = 7 T was calculated according
to Eqs. (1)-(3) at a grid spacing of 0.04× 0.04× 0.04 mm3,
where the summation in Eq. (2) was carried out over 100
evenly divided DMV segments of length 0.04 mm. Then
complex Gaussian noise was added to the image. The SDs
of the noise were chosen such that the SNR of WM at
0.4-mm voxel size was consistent with the SNR of our
in vivo images (SNR= 10), and SNR is proportional to
the voxel volume. We simulated a total of 11 isotropic
voxel sizes between 0.08 and 1 mm by convolving the com-
plex image with the PSF in Eq. (4). The convolution was
performed at the same grid spacing as given previously.
The simulated images had a size of 6× 6× 6 mm3. This
procedure was repeated 50 times with different Gaussian
noise at each spatial resolution for calculating the random
error.
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ZHOU et al. 5

3.5 Data analysis

3.5.1 Phantom study

In the phantom study, graphite rod masks with a total
length of 10.5 mm were manually drawn based on the
magnitude image acquired at TE1. They included all
hypointense voxels on the image relative to the back-
ground. The principal component analysis algorithm30

was applied to the matrix consisting of rows of mask voxel
coordinates to obtain the initial direction of the rod. The
initial values of 𝜃vessel and 𝜑vessel rxy α were set as those for
a line that was oriented in the main direction determined
by principal component analysis and passed through the
mean coordinates of all mask voxels. The region of inter-
est (ROI) for model fitting was defined as a cylinder with
a diameter of 9.4 mm, whose axis coincided with the line,
had a length of 5.3 mm, and covered the middle half of the
manually drawn mask.

The complex image was calculated from the magnitude
image at TE1 and the phase difference image provided by
the vendor. We used phase-difference image instead of the
original phase image acquired at TE1 to remove the initial
nonzero phase at TE= 0 ms. The phase difference is con-
verted to the phase at TE1 by multiplying it by TE1∕ΔTE
before being used for model fitting. The image at the short-
est TE (i.e., TE1) was used for model fitting, as the magni-
tude image had the least dark regions that extend beyond
the actual space occupied by the rod. To obtain the model
image, convolution between the modeled MR signal and
the PSF were carried out for a cuboid enclosing this cylin-
drical ROI and had a dimension of 9.4× 9.4× 5.3 mm3.
The cuboid is discretized on a grid with spacing that is

one-tenth the MRI voxel size. Then, the complex signal
and the PSF defined in Eq. (4) were convoluted on the same
grid to obtain the model image. The value of mblood was set
to 0, because there were no water molecules in the graphite
rods. Because the graphite rods we used (2B pencil leads)
were made up of graphite powder, clay and wax, in which
the graphite particles were evenly distributed in different
orientations, they would exhibit isotropic magnetic sus-
ceptibility. As Δ𝜒 is unknown for the graphite rods, we
assumed different Δ𝜒 values in the range of 40–120 ppm
during model fitting.

3.5.2 In vivo study

For the in vivo images, clustering was carried out on the
segmented DMV masks from all test images. Because the
DMV is assumed to be a straight line, the following proce-
dure was used to find the longest straight segment of the
line. First, a path is defined for each DMV cluster. The path
is defined as the shortest path connecting the two terminal
voxels in each cluster. Second, we performed line fitting
on all path segments and the maximum distance (dmax),
from the path segment voxels to the corresponding fit-
ted lines was calculated. Finally, the longest path segment
with dmax, smaller than a preset threshold, was selected
as the longest straight DMV segment. The procedure of
searching for the longest straight segment and defining
dmax are illustrated in Figure 2A,B. All voxels within a
2-mm-diameter cylinder whose axis coincided with the fit-
ted line to the longest straight segment were included in
the model fitting. Similar to the phantom study, the convo-
lution was calculated for a cuboid enclosing the cylinder

F I G U R E 2 Diagrams and
demonstration of the straight-segment
selection for deep medullary vein (DMV).
(A) Line fitting and dmax calculation for
DMV path segments. (B) Selection of the
longest straight DMV segment based on the
longest path segment with dmax ≤ threshold.
(C) A zoomed area of the minimum
intensity projection of the gradient-echo
magnitude image. (D) Overlaid masks of the
selected longest straight DMV segment as
shown in green and the remaining DMV
mask voxels as shown in orange after
choosing the threshold of 0.5 mm for dmax.

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.30341 by C

as - Shanghaitech U
niversity, W

iley O
nline L

ibrary on [10/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 ZHOU et al.

and had a dimension of 2.0× 2.0× (1.6+L) mm3, where L
is the length of the longest segment.

To determine the dmax for identifying the longest
straight segment in a DMV, Figure 2C,D shows a zoomed
area of the minimum intensity projection of GRE mag-
nitude image at TE2 across 10 slices of a representative
subject. The green voxels in Figure 2D had dmax ≤ 0.5 mm,
which matched the visually determined straight segments
of DMVs well. Therefore, a distance threshold of 0.5 mm
was adopted.

Model fitting was performed on the complex image at
TE2. The central voxels of the thalamostriate vein (∼110
voxels across three axial slices), which was not affected

by partial volume effect, were manually labeled on the
magnitude image at TE2, and mblood was set as the mean
magnitude of the labeled voxels during the fitting. The
value of Δ𝜒 was set as 0.41 ppm, which was typical for
cerebral veins.20

3.5.3 Simulation

For the simulated images, the ROI for model fitting was
defined as a cylinder whose axis coincided with the sim-
ulated vessel axis and had the same length as the vessel.
The diameter of the cylinder was adjusted for each voxel

F I G U R E 3 (A) A photo of the eight-graphite-rod phantom. (B) Gradient-echo magnitude image of the phantom. Arrows mark the true
diameters of individual graphite rods. The index of each graphite rod is shown in parentheses. (C) Phase-difference image normalized to TE1.
(D) The first and second rows on the left (right) are the measured and fitted real (imaginary) parts of the complex image surrounding three
representative graphite rods in the cross-sectional plane. The true diameters of the rods are given at the top of each column. Only voxels
within the red contour were used for fitting. The value of Δ𝜒 was assumed to be 83.5 ppm during fitting.
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ZHOU et al. 7

size to cover all voxels with visible phase difference from
the background. The cuboid for convolution calculation,
for obtaining the model image, coincided with the FOV of
the simulated image.

All model fitting was performed in MATLAB R2020b
(MathWorks, Natick, MA, USA) on a Windows personal
computer equipped with Intel Core i5-11500U CPU and
16 GB RAM. Model fitting for each graphite rod took, on
average, 670 s. The fitting time for each DMV depended
on the length of the longest straight segment, which was
between 80 and 3800 s with DMV path length ranging from
4 to 40 voxels.

4 RESULTS

A photo of the graphite phantom is shown in Figure 3A.
Figure 3B shows a slice of the GRE magnitude image. The
slice is perpendicular to graphite rods, and true diameters
and rod indices are labeled for each rod. Figure 3C shows
the corresponding phase-difference image after conver-
sion to the phase at TE1. The dipole field distribution
pattern can be clearly observed. There were also strong
phase variations at the bottom and top of the phantom
due to field inhomogeneity near the phantom–air inter-
face. Figure 3D shows the measured and fitted real and
imaginary parts of the complex image near the graphite
rods with measured diameters of 320, 540, and 690 𝜇𝑚,

respectively. The fitted and measured images exhibit simi-
lar spatial patterns.

The product ofΔ𝜒 and the fitted cross-sectional area (=
𝜋a2) remained almost constant for different Δ𝜒 , as illus-
trated in Figure 4A. The deviations of the product to their
mean values ranged from −1.27% to 1.07%. When Δ𝜒 is
assumed to be 83.5 ppm, the slope of the linear regression
line with zero intercept is equal to 1 and R-square of the fit
is 0.9443, as shown in Figure 4B. Because the fitted diame-
ters scale with 1∕

√
Δ𝜒 , the strong correlation will remain

the same if a different Δ𝜒 value is assumed, although the
slope of the linear regression line will deviate from unity.

Figure 5A,B shows representative in vivo GRE mag-
nitude and phase images at TE2 with non–brain tissue
removed. Figure 5C,D shows the corresponding zoomed
brain area where DMVs are densely distributed. DMVs
can be identified as hypointense voxels on the magnitude
image. However, the phase image has both hyperintense
and hypointense voxels along the DMV path due to the
dipolar field pattern induced by the DMVs.

Figure 6A,B shows a representative GRE magnitude
image at TE2 and overlaid DMV masks generated by the
trained nnU-Net model (labeled as green). Most DMV vox-
els that are hypointense within the WM are delineated
by the segmentation model. A few DMV voxels remain
undetected by the model (labeled as red), possibly due to
their far distance from the lateral ventricle or close prox-
imity to thalamostriate veins, which deviates from the

F I G U R E 4 Fitting results of graphite rods in phantom. (A) The relationship between the product of the cross-sectional area of each
graphite rod obtained by the fitted model and Δ𝜒 and the assumed susceptibility difference between water and graphite (Δ𝜒). (B) The scatter
plot of the fitted and true diameters. The red line is a linear regression with zero intercept. The value of Δ𝜒 is assumed to be 83.5 ppm, such
that the slope of the fitted line is equal to 1.
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8 ZHOU et al.

F I G U R E 5 Representative in vivo
gradient-echo images. (A) Magnitude
image. (B) Phase image. (C,D) Zoomed
brain area of magnitude image and phase
image respectively.

contextual features of most DMVs. On average, there are
136 DMVs on the 64 slices in each subject. In comparison,
there are 151 DMVs on the 64 slices in the ground-truth
mask. Figure 6C,D shows the DSC, PPV, and SEN values of
the trained segmentation model evaluated on the voxel and
cluster level across all 20 testing subjects. The mean and
SDs of the DSC, PPV, and SEN are provided in Table 1. The
longest straight segment ranged between 1.60 and 8.80 mm
(mean± SD: 4.64± 2.47 mm).

Figure 7A shows a zoomed minimum intensity projec-
tion image across three slices of a GRE magnitude image
at TE2, with a white contour marking a representative
DMV. Figure 7B shows the corresponding zoomed area of
the representative DMV. Figure 7C shows the measured
and fitted real and imaginary parts of the complex signal
at TE2 of four continuous sagittal slices along the slice
order defined in Figure 7B surrounding the representa-
tive DMV. Similar to the phantom images in Figure 3D,
the fitted and measured images exhibited similar spatial
patterns.

Figure 8A,B shows the zoomed minimum intensity
projection images across five slices of a representative GRE
magnitude image at TE2 and overlaid colormap of fitted
diameters. Figure 8C illustrates the distribution of the fit-
ted diameters of 2712 DMV clusters across all 20 subjects.
Most of these fitted DMV diameters fell within the range
of 90–200 μm with a peak at about 120 𝜇𝑚, encompassing
2501 (92.22%) DMV clusters. A total of 128 (4.72%) and 83
DMV clusters (3.06%) had fitted diameters less than 90 μm
and exceeding 200 μm, respectively.

Figure 9A shows the simulated magnitude and phase
images without PSF effects and at 0.12-mm, 0.24-mm,
and 0.40-mm voxel sizes, respectively. As shown in
Figure 9B, when the voxel size is less than or equal to
0.45 mm, the proposed model can estimate the diameter
of the numerical vessel accurately (maximum absolute
error= 8.66% at 0.45-mm voxel size). However, when the
voxel size is ≥ 0.5 mm, the estimated vessel diameter has
large errors (minimum absolute error= 23.33% at 0.5-mm
voxel size).
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ZHOU et al. 9

F I G U R E 6 Segmented deep medullary vein (DMV) masks and evaluation metrics. (A) Representative gradient-echo magnitude image.
(B) Overlaid DMV mask with green represented as nnU-Net segmented voxels and red represented false-negative DMV voxels. (C,D)
Boxplots of Dice similarity coefficient, the sensitivity, and the positive prediction value of the DMV masks on voxel (C) and cluster (D) levels.

T A B L E 1 The mean (SD) of the Dice similarity coefficient (DSC), positive prediction value (PPV), and sensitivity (SEN) values of deep
medullary vein masks obtained by the nnU-Net segmentation of gradient-echo magnitude and phase images across all the 20 subjects on
voxel and cluster scale.

DSC PPV SEN

Voxel scale 0.68 (0.03) 0.70 (0.07) 0.68 (0.08)

Cluster scale 0.83 (0.04) 0.84 (0.05) 0.83 (0.08)
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10 ZHOU et al.

F I G U R E 7 (A) A zoomed area of the minimum intensity projection (MIP) of the gradient-echo magnitude image. The white contour
marks a representative deep medullary vein (DMV). (B) The zoomed area of the representative DMV. (C) From left to right shows four
successive slices along the slice order as defined in (B). From top to bottom shows the measure real parts, fitted real parts, measured
imaginary parts, and fitted imaginary parts respectively. Only voxels within the red contour were used for fitting.

5 DISCUSSION

In this study, we proposed a new method for quantitative
study of DMVs, which consists of deep learning–based
automatic segmentation and model-based quantita-
tive measurement of DMV diameters. The trained

segmentation model is able to segment 83% of the visible
DMV with a positive prediction value of 84% and DSC of
83%. The validity of the model-based diameter quantifica-
tion method was demonstrated in phantom experiments
in which the measured diameter varied in proportion
to the true diameter. We further applied our method to
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ZHOU et al. 11

F I G U R E 8 Deep medullary vein (DMV) diameter fitting results. (A) Zoomed area of the minimum intensity projection of
representative gradient-echo (GRE) magnitude image. (B) Color map of fitted DMV diameters overlaid on the minimum intensity projection
of the GRE magnitude image. (C) Histogram of the fitted DMV diameters.

F I G U R E 9 (A) First column: The magnitude and phase images used for simulations. Second–fourth columns: Representative
magnitude and phase images simulated at voxel sizes of 0.12, 0.24, and 0.40 mm, respectively. (B) The vessel diameters estimated by the
proposed model for all the simulated voxel sizes.

obtain diameters of the straight section of DMVs in vivo.
The measured DMV diameters are in good accordance
with ex vivo results measured using X-ray radiography.8

Several methods have been proposed for the segmen-
tation of DMVs. Kuijf et al.’s segmentation method13 first
extracted the lateral ventricle from T1-weighted (T1w)
images, using its expanded surface as the ROI. Within this
ROI on GRE images, a combination of vesselness filter,
tubular tracking, and thresholding was applied to detect
DMVs. Yan et al.14 set a threshold based on the inten-
sity of the brain parenchyma for initial segmentation of
DMVs based on SWI images and manually removed false
DMVs by an experienced radiologist. Jeong et al.15 quan-
titatively analyzed the likelihood of a voxel being a vessel
on SWI images based on association potentials such as
intensity, tubular shape, and location, and then extracted
DMVs from the WM regions defined on T1w images. Our
study represents the first use of neural network models

in automatic DMV segmentation. There are two advan-
tages of our nnU-Net-based DMV segmentation method
over previous methods: First, only GRE magnitude and
phase images are needed for segmentation, thus avoiding
the errors that may be introduced by aligning T1w images
with GRE/SWI. Second, our segmentation process is more
concise and automated, requiring only automated prepro-
cessing and 3D U-Net segmentation based on nnU-Net
framework, without the need for manual setting of seg-
mentation parameters. Overall, our deep learning–based
DMV segmentation method is easier to deploy. It is note-
worthy that when dealing with GRE data acquired under
different acquisition conditions such as different TE, reso-
lution, or field strength, it is advisable to retrain the model
to ensure optimal segmentation performance. Due to the
need for manual intervention or empirically determined
segmentation parameters (e.g., vesselness thresholds) in
previous methods and the lack of T1w images in our study,
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12 ZHOU et al.

a direct and fair comparison of the segmentation accura-
cies between the proposed and aforementioned methods
is difficult to make. However, the superiority of neural
networks over conventional methods has been demon-
strated in segmenting other tubular thin structures such
as perivascular spaces, in which DSC, PPV, and SEN were
close to what we obtained in the current study.16

Several methods have been proposed to account for
partial-volume effects in quantification of venous diame-
ter and/or susceptibility. However, none of the previous
methods can be applied to the DMVs. The joint use of mag-
nitude and phase method19 can simultaneously estimate
venous oxygen saturation and partial-volume fraction in
straight veins that are approximately parallel to main mag-
netic field with an assumption that the field outside the
vein equals zero. However, most DMVs are almost perpen-
dicular to the main magnetic field, which creates a sub-
stantial field outside them. Furthermore, the relationship
between partial-volume fraction estimated by joint use of
magnitude and phase and the vessel radius is unclear. The
CISSCO (Complex Image Summation around a Spherical
or a Cylindrical Object) method20,21 adds up complex MR
signals around a vein and equates the complex sums to
analytical formulas containing the unknown venous sus-
ceptibility and radius. The venous susceptibility and diam-
eter can be obtained by solving the equations. However,
due to the low SNR of the phase variations surrounding
the DMVs and the large covariance between susceptibility
and diameter errors, reliable quantification of DMV diam-
eters cannot be obtained using CISSCO. Furthermore, the
effect of PSF was not considered in their equations either.
Recently, multi-compartment QSM methods have been
proposed.31 To separate the different magnetic sources,
different transverse relaxation rates of the compartments
were considered. However, the venous compartment has
not been included in the model.

The PSF formula described by Eq. (4) is derived under
the assumption that the image is obtained by discrete
inverse Fourier transform of fully sampled k-space data.
However, for undersampled acquisitions, the reconstruc-
tion process often involves certain types of regularization,
which may result in discrepancies between the actual PSF
and the one assumed in Eq. (4). On the other hand, filters
applied during image reconstruction such as antiringing
filter can also affect the PSF and should be avoided in order
to apply the proposed method. For a given reconstruction
pipeline, the actual PSF can potentially be estimated by
reconstructing k-space data with a constant and uniform
value across the entire sampled k-space domain.

We note that in the current method, the susceptibil-
ity of venous blood (Δ𝜒) is fixed to a typical value of
0.41 ppm, to reduce the number of fitting parameters and
to improve the robustness of the fitted results to noise. In

the phantom study, the fitted diameter exhibited a 1∕
√
Δ𝜒

dependence (Figure 4A), suggesting thatΔ𝜒 and the diam-
eter cannot be reliably determined simultaneously from
the fit, and a separate method for determining Δ𝜒 is
needed. In previous studies,20,32,33 the average Δ𝜒 value of
healthy subjects has been reported to lie within the range
of 0.33 and 0.54 ppm. Furthermore, some studies have
demonstrated that some specific diseases (e.g., hemodial-
ysis32 and leukoencephalopathy34) are associated with the
decrease of patients’ venous oxygen saturation, which will
be reflected in the increase of Δ𝜒 . Assuming a broader
Δ𝜒 value range extending from 0.33 to 0.60 ppm, we can
deduce that the reported DMV diameters may introduce
a bias ranging from −17.3% to 11.5%, based on the results
demonstrated in Figure 4A (i.e., the estimated diameters
scale with 1∕

√
Δ𝜒). To determine whether there exists

susceptibility alterations in venous blood, the proposed
method can be extended to include the susceptibility of
venous blood as a free-fitting parameter and apply it to
straight large veins downstream to DMV, such as the sep-
tal veins, where the contrast-to-noise ratio is higher, as we
have demonstrated in an earlier study.35

Our simulation study suggests that the DMV diame-
ters derived from model fitting are overestimated when the
voxel size is above 0.45 mm. The origin of the overestima-
tion remains to be determined but may be caused by the
difficulty of the model to accurately locate the specific spa-
tial position of the vessel based on the numerical data with
lower resolution. We note that the resolution for the in
vivo study (0.43× 0.43× 0.4 mm3) is within the range with
relatively small errors.

Narrowing of DMVs due to collagenosis can reduce
blood flow into deep WM, which may lead to chronic
ischemia and development of WM lesions. However,
whether or not DMV dysfunction plays a role in the SVD
etiopathogenesis remains unclear.2,14,36–38 Large numbers
of DMV can be visualized in SWI from high-field MRI
at 3 T and 7 T, providing an opportunity for elucidating
its role in SVD etiopathogenesis. Earlier studies reported
greater number of DMV voxels in patients who had
WM hyperintensities in T2-weighted MR images than in
healthy controls.14 However, reduced DMV visibility has
also been reported to be associated with increased severity
of CSVD.9,10,18,39 On the other hand, increased tortuos-
ity of the DMV has been observed in patients with early
Alzheimer’s disease and amnestic mild cognitive impair-
ment.38 However, the underlying physiological changes of
the DMVs underlying those morphological observations
remain to be determined.

The automatic segmentation model developed in this
study can facilitate future studies into the earlier mor-
phological changes that may take place before the onset
of cognitive impairments. Furthermore, quantitative
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ZHOU et al. 13

evaluation of DMV diameters can help distinguish
whether changes in the inner diameters of DMVs, changes
in deoxyhemoglobin levels, or both gives rise to changes
in DMV conspicuity in patients with CSVD.

6 CONCLUSIONS

A new method is developed to segment DMVs auto-
matically and to quantitatively measure DMV diameters.
The phantom study demonstrated that the quantification
method can accurately correct for partial-volume effects
and obtain diameters close to the true values. The trained
automatic segmentation model based on 3D-UNet pro-
vided by the nnU-Net framework can extract DMVs from
GRE data accurately. DMV diameters measured by our
method across 20 subjects were distributed primarily in
the 90–200 μm range. The proposed method may facili-
tate the study of the role of DMV in the pathogenesis
of CSVD.
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